NumPy Joining Array
Joining NumPy Arrays
Joining means putting contents of two or more arrays in a single array.
In SQL we join tables based on a key, whereas in NumPy we join arrays by axes.
We pass a sequence of arrays that we want to join to the
concatenate()
function, along with the axis. If axis is not explicitly passed, it is taken as 0.
Example
Join two arrays
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4,
5, 6])
arr = np.concatenate((arr1, arr2))
print(arr)
Try it Yourself »
Example
Join two 2-D arrays along rows (axis=1):
import numpy as np
arr1 = np.array([[1, 2], [3, 4]])
arr2 =
np.array([[5, 6], [7, 8]])
arr = np.concatenate((arr1, arr2), axis=1)
print(arr)
Try it Yourself »
Joining Arrays Using Stack Functions
Stacking is same as concatenation, the only difference is that stacking is done along a new axis.
We can concatenate two 1-D arrays along the second axis which would result in putting them one over the other, ie. stacking.
We pass a sequence of arrays that we want to join to the
stack()
method along with the axis. If axis is not explicitly passed it is taken as 0.
Example
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 =
np.array([4, 5, 6])
arr = np.stack((arr1, arr2), axis=1)
print(arr)
Try it Yourself »
Stacking Along Rows
NumPy provides a helper function: hstack()
to stack along rows.
Example
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4,
5, 6])
arr = np.hstack((arr1, arr2))
print(arr)
Try it Yourself »
Stacking Along Columns
NumPy provides a helper function: vstack()
to stack along columns.
Example
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4,
5, 6])
arr = np.vstack((arr1, arr2))
print(arr)
Try it Yourself »
Stacking Along Height (depth)
NumPy provides a helper function: dstack()
to stack along height, which is the same as depth.
Example
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4,
5, 6])
arr = np.dstack((arr1, arr2))
print(arr)
Try it Yourself »